

FRANCISCO JOSEPHINUM WIESELBURG

BIOMASS I LOGISTICS I TECHNOLOGY

BLT-Aktzahl: 173/10 (ersetzt BLT-Aktzahl: -/-)

BLT-Protokollnummer: 052/10 (ersetzt BLT-Protokollnummer: -/-)

Hackgutfeuerung Herz firematic 80 BioControl

Prüfbrennstoff: Hackgut Fichte

Anmelder und Hersteller:

Herz Energietechnik GmbH Herzstraße 1 AT 7423 Pinkafeld

Seite

INHALTSVERZEICHNIS

	D E6		IDUNO.	
1	1.1		BUNGeines	
	1.1	-	pen auf dem Kesselschild	
	1.3	-	na der Feuerung	
	1.4		ische Daten	
2	PRÜ		UND ERGEBNISSE	
	2.1	Versu	chsanordnung – Messmethoden	3
	2.2	Durch	führung der heiztechnischen Prüfung	4
	2.3		ertung der Emissionsmessungen	
	2.4	Heizte	chnische Untersuchung bei Nenn-Wärmeleistung mit Hackgut Fichte	5
		2.4.1	Verlauf der leistungsbezogenen Messwerte	7
		2.4.2	Verlauf der Abgaszusammensetzung	
	2.5	Heizte	chnische Untersuchung bei Kleinster Wärmeleistung mit Hackgut Fichte	9
		2.5.1	Verlauf der leistungsbezogenen Messwerte	
		2.5.2	Verlauf der Abgaszusammensetzung	
	2.6		te über die Oberfläche	
	2.7		erseitiger Widerstand des Heizkessels	
	2.8		sche Leistungsaufnahme	14
		2.8.1	Mittlere elektrische Leistungsaufnahme bei Nenn-Wärmeleistung, Kleinster Wärmeleistung, beim Zündvorgang und im Schlummerbetrieb	14
		2.8.2	Elektrische Leistungsaufnahme zentraler Verbraucher	14
3	zus	AMME	NFASSUNG DER ERGEBNISSE	14
	3.1		chnische Prüfung	
	3.2		onsüberprüfung Temperaturregler / Sicherheitstemperaturbegrenzer am Heizkessel.	
	3.3		onsüberprüfung der Einrichtung zur Abfuhr überschüssiger Wärme	
4	BEU	RTEIL	UNG	16
ANH			ORMATIV)	
	Gese	etzliche A	Anforderungen an Kleinfeuerungen für biogene Brennstoffe in Österreich	17
ANH		В		
		•	Oberflächentemperatur	
ANF	IANG			1212000
	Siepa	anaiyse.		20

ANGEWANDTE NORMEN

[1]	ÖNORM EN 303-5:1999	Heizkessel für feste Brennstoffe, hand- und automatisch beschickte Feuerungen, Nenn-Wärmeleistung bis 300 kW
[2]	ÖNORM EN 304:2005	Heizkessel, Prüfregeln für Heizkessel mit Ölzerstäubungsbrennern
[3]	ÖNORM EN 267:1999	Ölbrenner mit Gebläse – Begriffe, Anforderungen, Prüfung, Kennzeichnung
[4]	ÖNORM M 7132:1998	Energiewirtschaftliche Nutzung von Holz und Rinde als Brennstoff – Begriffsbestimmungen und Merkmale
[5]	ÖNORM M 7133:1998	Holzhackgut für energetische Zwecke – Anforderungen und Prüfbestimmungen
[6]	DIN 4702-1:1990	Heizkessel – Begriffe, Anforderungen, Prüfung, Kennzeichnung
[7]	DIN 4702-2:1990	Heizkessel – Regeln für die heiztechnische Prüfung
[8]	ÖNORM M 5861-1:1993	Manuelle Bestimmung von Staubkonzentrationen in strömenden Gasen – Gravimetrisches Verfahren – Allgemeine Anforderungen
[9]	ÖNORM M 5861-2:1994	Manuelle Bestimmung von Staubkonzentrationen in strömenden Gasen – Gravimetrisches Verfahren – Besondere messtechnische Anforderungen

IN ANLEHNUNG ANGEWANDTE NORMEN

[1]	ÖNORM EN 13284-1:2002	Emissionen aus stationären Quellen – Ermittlung der Staubmassen- konzentration bei geringen Staubkonzentrationen – Teil 1: Manuelles gravimetrisches Verfahren
[2]	VDI 2066-1:2006	Messen von Partikeln, Staubmessung in strömenden Gasen, Gravi- metrische Bestimmung der Staubbeladung

1 BESCHREIBUNG

1.1 **Allgemeines**

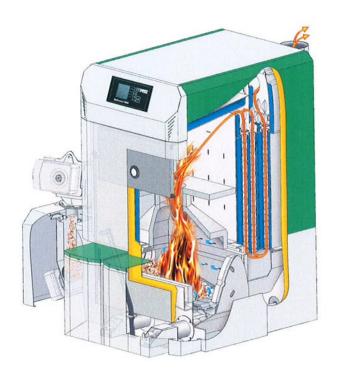
Die geprüfte Hackgutfeuerung Herz firematic 80 BioControl der Firma Herz Energietechnik GmbH, mit einer Nenn-Wärmeleistung von 80 kW beim Betrieb mit Holzhackgut, besteht aus einer Brennstofffördereinrichtung, automatischen elektrischen Heißluftzündung, Brennkammer, einem Rohrwärmetauscher und integrierter Aschenaustragung. Über die Steuerung mit den dazugehörigen Schaltern und Sensoren, dem drehzahlgeregelten Saugzuggebläse, der Lambdasonde und dem Abgastemperaturfühler wird die Feuerung automatisch geregelt.

Für die Prüfung wurde die Feuerung mit einem Zwischenbehälter aus Blech aufgebaut. Das Hackgut wird aus dem Vorratsbehälter über einen Fallschacht mit integrierter Rückbrandklappe zur Stokereinheit gefördert. Die Stokerschnecke fördert das Hackgut in den Brennraum. Das Brennstoffniveau im Brennraum ist für die Kesselleistung und den Betriebszustand entscheidend. Die Einschubregelung arbeitet grundsätzlich mit einem voreingestellten Takt/Pause-Verhältnis, wobei die Einschubwerte im Regelbetrieb durch die Verbrennungsregelung korrigiert werden. Die Verbrennungsluftzufuhr erfolgt als Primärluft durch den Brennstoff und als Sekundärluft, welche den Verbrennungsgasen zugeführt wird. Die Luftzufuhr erfolgt über Öffnungen seitlich am Brenner. Das drehzahlgeregelte Saugzuggebläse an der Rückseite des Kessels erzeugt den Unterdruck und fördert die Verbrennungsgase durch den Kessel über den stehend angeordneten Rohrwärmetauscher zum Abgasrohr. Die Drehzahl des Saugzuggebläses wird abhängig von der Kesseltemperatur und der Lambdaregelung variiert. Der Wärmetauscher ist mit einer automatischen Reinigungseinrichtung ausgestattet. Unterhalb des Brenners und des Wärmetauschers befinden sich zwei Aschenbehälter. Der Brennraum und der Wärmetauscher sind nach außen wärmegedämmt.

Über die Mikroprozessorregelung wird die gesamte Brennstoffzufuhr, Zündung, Verbrennungsregelung und die Entaschung automatisch geregelt.

1.2 Angaben auf dem Kesselschild

Туре	firematic 80 BioControl
Herstellnummer	1080000407
Baujahr	2010
Brennsloff: Hackgut G30/W30 lt.ONORM M713	13
Kleinste Leistung [kW]	22,0
Nennleistung [kW]	80,0
Brennstoffwärmeleistung [kW] bei Nennwärr	meleistung 85,6
Brennstoff: Pellets It. ÖNORM M7135, DINplus	Pellets, SwissPelleta
Kleinste Leistung [kW]	22,2
Nennleistung [kW]	80,0
Brennstoffwärmeleistung [kW] bei Nennwärr	meleistung 84,5
Kesselklasse	3
Wasserinhall [Liter]	179
Zulässiger Betriebsüberdruck [bar]	3
Zulässige Betriebstemperatur [°C]	95
Elektroanschluss	1/N/PE 230V IP20
Elektrische Anschlussleistung maximal [W]	1650
Elektrische Leistung bei Nennwärmeleistung [W	V] 350
Pufferspeicher erforderlich	Empfohlen


HERZ Energietechnik GmbH Herzstraße 1, 7423 Pinkafeld Osterreich / Austria Tel.: +43 (0) 3357 / 42840

www.herz.eu

1.3 Schema der Feuerung

1.4 Technische Daten

Gesamtabmessungen – Feuerung	Wert	Einheit
Gesamtbreite ohne Stokereinheit	850	mm
Gesamtbreite mit Stokereinheit	1600	mm
Gesamttiefe inkl. Saugzuggebläse + Aschebehälter	1750	mm
Gesamthöhe	1695	mm
Abgasrohrdurchmesser	180	mm
Höhe bis zum Abgasrohranschluss	1650	mm
Vorlauf-/Rücklaufanschluss	2	"
Wasserinhalt	179	1
Entleerung	1/2	"
Wärmedämmung	10 - 100	mm
Gesamtmasse (Feuerung + Stokereinheit + Aschenbehälter)	1032	kg

Quelle: Messung an der BLT Wieselburg

2 PRÜFUNG UND ERGEBNISSE

Bei den Messungen wurden die Wärmeleistung, der Kesselwirkungsgrad (direkte Methode), die Zusammensetzung des Abgases, die Abgastemperatur in der Messstrecke, der Förderdruck (Zug), das Emissionsverhalten und die elektrische Leistungsaufnahme ermittelt. Im Bereich der Nenn-Wärmeleistung wurden die Oberflächentemperaturen bei stationärem Betriebszustand gemessen und die Verluste über die Oberfläche abgeschätzt.

Die Messgeräte und die Messverfahren entsprechen den Anforderungen von ÖNORM EN 303-5:1999, ÖNORM EN 304:2005 und ÖNORM EN 267:1999. Die Messgenauigkeit und die Messunsicherheit sind in den Verfahrensanweisungen zur Verifizierung im Qualitätsmanagement-Handbuch der BLT Wieselburg festgehalten.

2.1 Versuchsanordnung – Messmethoden

KESSELPRÜFSTAND MIT WÄRMETAUSCHER: Wärmeleistungsmessung durch unmittelbare Messung der im Kreislauf umgewälzten Wassermenge und deren Temperaturerhöhung (DIN 4702-2:1990).

ABGASABFUHR über senkrechte Messstrecke, Erzeugung des Förderdruckes durch Fertigteilfang, Durchmesser 300 mm, Höhe über Grund 9 m, Begrenzung des Förderdruckes durch Zugbegrenzerklappe.

WÄRMELEISTUNGSMESSUNG: Bestimmung des Massedurchflusses mit Coriolis-Massedurchflussmessgerät PROMASS 83 F der Fa. Endress & Hauser, Wassertemperaturen am Kesselein- und -austritt mit Widerstandsthermometer Pt 100, 1/3 DIN, paarweise kalibriert.

ABGASTEMPERATUR in der Messstrecke durch Netzmessung mit 5 Widerstandsthermometern Pt 100.

FÖRDERDRUCK: Differenzdruckmessumformer (Delta-P P92K), Messbereich 0-100 Pa.

WASSERSEITIGER WIDERSTAND: Differenzdruckmessumformer mit keramischen Messmembranen DELTABAR S PMD 70 der Firma Endress & Hauser.

GEHALT AN KOHLENDIOXID UND KOHLENMONOXID: Nicht dispersiver Infrarotgasanalysator NGA 2000 der Firma Emerson; Kohlendioxid: kleinster Messbereich 0 - 5 %, größter Messbereich 0 - 20 %; Kohlenmonoxid: CO Low - kleinster Messbereich 0 - 50 ppm, größter Messbereich 0 - 2500 ppm, CO High - kleinster Messbereich 0 - 1,0 %, größter Messbereich 0 - 10 %; Bestimmung im trockenen Abgas.

STAUBGEHALT: Gravimetrische Gesamtstaub-Messeinrichtung der Firma Paul Gothe GmbH mit einer Nennabsaugmenge von 6 m³/h, Staubabscheidung auf gestopfte Quarzwollfilter; Filter direkt nach Entnahmesonde und Winkelstück, Bestimmung des Teilstromvolumens mit Trockengaszähler und vorgeschaltetem Trockenturm. Die Entnahmestelle für die Bestimmung des Staubgehaltes ist unmittelbar nach der Messstrecke angeordnet.

GEHALT AN ORGANISCHEN GASFÖRMIGEN STOFFEN: Flammenionisationsdetektor der Firma JUM, Type VE 5; Probenahme über beheizten Filter und beheizte Leitung (auf 180 °C thermostatisiert); Bestimmung im feuchten Abgas.

GEHALT AN STICKSTOFFMONOXID: Gasanalysator der Firma ECO PHYSICS, Type CLD 700 El-ht; Messprinzip Chemilumineszenz, Probenahme über beheizten Filter und beheizte Leitung; Gaskühler; Bestimmung im trockenen Abgas.

ELEKTRISCHE LEISTUNGSAUFNAHME: Energiezähler ULYS ETD der Firma ENERDIS, Drehstrom 100 - 400 mit einer Messgenauigkeit der Wirkenergie nach IEC 61036/EN61036 Cl.1. Maximale Auflösung des Impulsausgangs: 0,1 Wh.

Power Analyzer Norma 4000 mit 3 Power Phase PP40 und folgenden Spezifikationen: 8 Messbereiche für Spannung (0,3 / 1 / 3 / 10 / 100 / 300 / 1000 V), 6 Messbereiche für Strom (30 - 100 mA - 0,3 - 1 - 3 - 10 A). Die Basisgenauigkeit ist +/- 0,1 % vom Messwert und +/- 0,1 % vom Messbereich, Sample Rate 341 kHz, Bandbreite für Spannung 3 MHz.

MESSDATENERFASSUNG mit Datenerfassungssystem TopMessage der Firma Delphin Technologie AG, Abfrageintervall 1 Sekunde, Mittelwertbildung über 10 Messungen, Ablage der gemittelten Daten auf Datenträger.

2.2 Durchführung der heiztechnischen Prüfung

WÄRMELEISTUNG: Messungen wurden entsprechend ÖNORM EN 303-5:1999 bei Nenn-Wärmeleistung und bei der kleinsten Wärmeleistung (≤ 30 % der Nenn-Wärmeleistung) durchgeführt. Bei der Messung der Nenn-Wärmeleistung wurde die Feuerung vor Messbeginn mindestens 3 Stunden im Bereich der Nenn-Wärmeleistung betrieben, die Messung selbst erstreckte sich über eine Versuchsdauer von mindestens 6 Stunden. Zur Berechnung des Wirkungsgrades wurde die im Kesselwasser gespeicherte Wärmemenge berücksichtigt.

EMISSIONEN: Kohlendioxid, Kohlenmonoxid, organisch gebundener Kohlenstoff und Stickoxide wurden über die gesamte Versuchszeit gemittelt. Für die Ermittlung des Staubgehaltes wurde die Absaugdauer je Filter mit 30 Minuten begrenzt. Der Staubgehalt wurde aus 6 Halbstundenmittelwerten, gleichmäßig über die Versuchsperiode verteilt, bestimmt. Vor und nach jeder Versuchsperiode wurden die Gasanalysatoren mit den entsprechenden Kalibriergasen überprüft.

EINSTELLUNG: Die ausgewiesenen Messungen beziehen sich auf reproduzierbare Versuche mit optimierter Einstellung. Die Einstellung erfolgte im Vorversuch anhand der Empfehlung des Herstellers. Dabei wurde getrachtet, bei möglichst hohem Gehalt an Kohlendioxid möglichst geringen Gehalt an Kohlenmonoxid zu erreichen.

BRENNSTOFF: Die Messungen wurden mit Holzhackgut Fichte G 30, W 35 (Feinhackgut) entsprechend ÖNORM M 7133:1998, mit einem Wassergehalt von w = 25,3 % und w = 28,4 % durchgeführt. Der Wassergehalt, der Aschegehalt und Brennwert wurden bestimmt, die Mittelwerte der chemischen Grunddaten der wasser- und aschefreien Substanz wurden der ÖNORM M 7132:1998 entnommen.

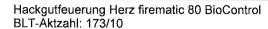
FUNKTIONSÜBERPRÜFUNG des Temperaturreglers, des Sicherheitstemperaturbegrenzers bzw. -wächters und der Einrichtung zur Abfuhr überschüssiger Wärme am Heizkessel. Die Messungen wurden entsprechend 5.13 und 5.14 der ÖNORM EN 303-5:1999 durchgeführt.

2.3 Auswertung der Emissionsmessungen

Für die Auswertung der Emissionsmessung wurde die vollständige Abgasanalyse mit Hilfe des gemessenen und über die Messperiode gemittelten Gehaltes an Kohlenmonoxid und Kohlendioxid sowie der Zusammensetzung des Brennstoffes berechnet. Die Geschwindigkeit des Abgases an der Messstelle wurde aus der Abgasmenge unter Berücksichtigung von Druck und Temperatur errechnet.

Der Gehalt an organischen gasförmigen Stoffen wurde im feuchten Abgas gemessen, die Emission auf trockenes Abgas umgerechnet und als organisch gebundener Kohlenstoff ausgewiesen. Der Gehalt an Stickoxiden wurde im trockenen Abgas gemessen und als NO₂ ausgewiesen.

2.4 Heiztechnische Untersuchung bei Nenn-Wärmeleistung mit Hackgut Fichte


Versuchs-Nr. HKA_1818

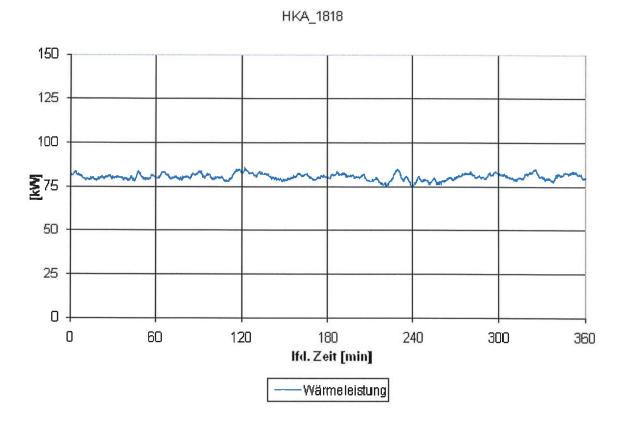
Kesselbezeichnung Hackgutfeuerung

Hackgutfeuerung Herz firematic 80 BioControl

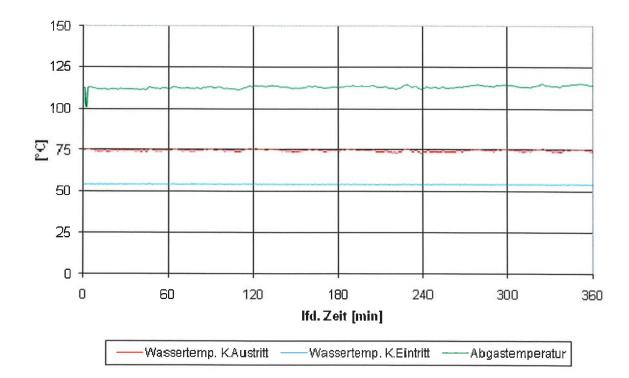
Nenn-Wärmeleistung (kW) 80,0

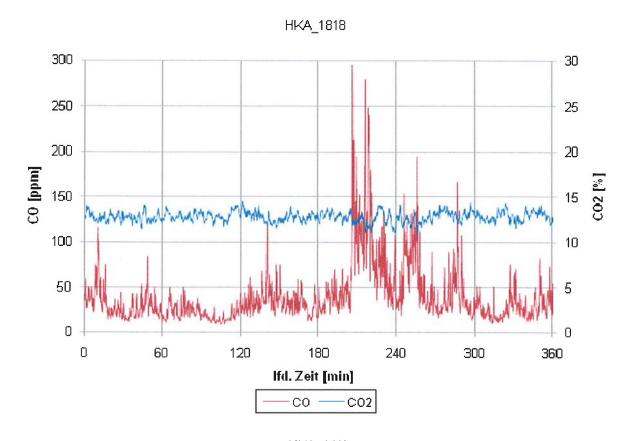
		Minimum	Mittelwert	Maximum
Versuchsbedingungen				
Messbeginn			09.2010 09:21	
Messende	127	02.	09.2010 15:22	
Messdauer	[hh:mm]		6:01	
Umgeb.temp.	°C	26,6	27,7	28,3
Außentemp.	°C	14,8	17,5	20,6
Luftdruck	mbar		988	
Prüfbrennstoff, zugeführte Wärme				
Prüfbrennstoff	Hackgut Fichte	10_0412		
Wasseranteil	kg/kg	-	0,284	
Ascheanteil	kg/kg		0,006	
Kohlenstoffanteil	kg/kg		0,360	
Wasserstoffanteil	kg/kg		0,044	
Sauerstoffanteil	kg/kg		0,305	
Heizwert der wasser- und				
aschefreien Substanz	MJ/kg		19,2	
Heizwert des Brennstoffes	MJ/kg		12,9	
zugef. Brennstoffmenge	kg		143,5	
stündl. Brennstoffmenge	kg/h		23,8	
Brennstoffwärmeleistung	kW		85,6	
Wärmeleistung, Wirkungsgrad				
Wasserkreislauf	kg/h	3401,0	3428,1	3456,4
Wassertemp. Kesseleintritt	°C	54,4	54,6	54,8
Wassertemp. Kesselaustritt	°C	73,3	74,8	76,0
Temperaturdifferenz	K	18,8	20,1	21,4
Wärmeleistung des Kessels	kW		80,4	
Auslastung	%		100,5	
Kesselwirkungsgrad	%		94,0	
Messwerte Abgasmessstrecke				
Abgastemperatur	°C	101,0	113,2	115,5
Förderdruck	Pa	6,7	7,9	12,2
Kohlendioxid	%	10,9	12,8	14,5
Kohlenmonoxid	ppm	8,9	39,5	294,1
organisch geb. Kohlenstoff	ppm	0,1	0,2	2,6
Stickstoffmonoxid	ppm	94,4	115,5	132,1
		,	1 -	, .

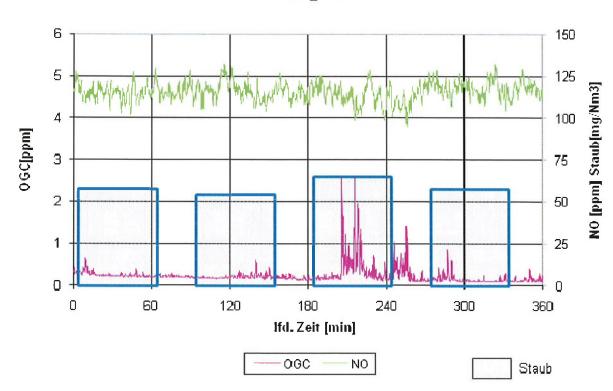
Ermittlung der Staubmassenkonzentration


Messergebnisse Versuch: Berechnung nach CO₂-Messung	HKA_1818				
Absaugbeginn:	hh:mm	09:25	10:55	12:25	13:55
Absaugdauer:	min	60	60	60	60
Gasprobe abgesaugt:	m³	0,565	0,505	0,567	0,527
CO ₂ -Gehalt gemessen:	%	12,7	12,8	12,7	13,0
O ₂ -Gehalt gerechnet:	%	7,8	7,6	7,8	7,5
Dichte der Gasprobe: trockenes Gas feuchtes Gas Wassergehalt	kg/Nm³ kg/Nm³ g/Nm³	1,35 1,28 110,44	1,35 1,28 111,41	1,35 1,28 110,19	1,36 1,28 112,43
Abgasmassenstrom: trockenes Gas	kg/kg	7,16	7,09	7,18	7,02
Geschwindigkeit: an Entnahmestelle am Sondenkopf	m/s m/s	2,31 2,07	2,29 1,85	2,32 2,08	2,28 1,93
Staubmasse: abgeschieden abgeschieden bezogen auf Probenvolumen	mg mg/Nm³	29,2 57,9	24,2 53,9	32,7 65,1	27,0 57,9
13 % O ₂ -Geh.	mg/Nm³	35,1	32,3	39,6	34,4

Beurteilungswerte


	bezogen auf	bezogen auf		
	zugef. Energie	f. Energie O ₂ -Geha		
	mg/MJ	mg/Nm ³	13 % mg/Nm³	
Staub	24	49	35	
Kohlenmonoxid (CO)	20	41	30	
org. geb. Kohlenstoff (OGC)	<1	<1	<1	
Stickoxide (NO _x)	97	196	143	


2.4.1 Verlauf der leistungsbezogenen Messwerte



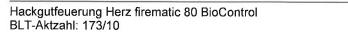
2.4.2 Verlauf der Abgaszusammensetzung

HKA_1818

2.5 Heiztechnische Untersuchung bei Kleinster Wärmeleistung mit Hackgut Fichte

Versuchs-Nr.

HKA_1817


Kesselbezeichnung

Hackgutfeuerung Herz firematic 80 BioControl

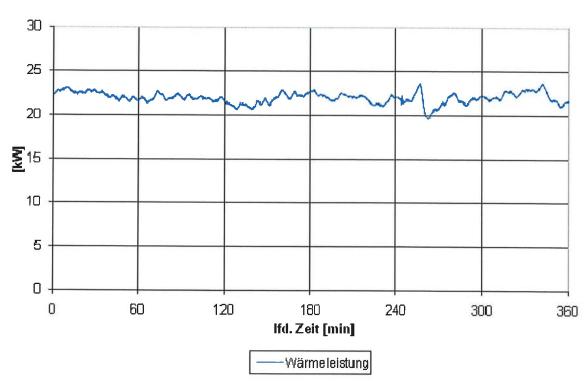
Nenn-Wärmeleistung (kW)

0,08

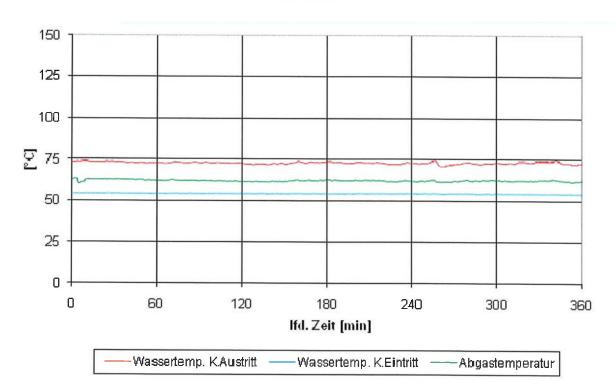
		Minimum	Mittelwert	Maximum
Versuchsbedingungen				
Messbeginn			01.09.2010 10:	
Messende	2.0		01.09.2010 16:	13
Messdauer	[hh:mm]		6:00	
Umgeb.temp.	°C	24,1	27,5	28,7
Außentemp.	°C	15,2	17,8	21,0
Luftdruck	mbar		986	
Prüfbrennstoff, zugeführte Wärme				
Prüfbrennstoff	Hackgut Fichte	e 10 0412		
Wasseranteil	kg/kg	_	0,253	
Ascheanteil	kg/kg		0,006	
Kohlenstoffanteil	kg/kg		0,376	
Wasserstoffanteil	kg/kg		0,046	
Sauerstoffanteil	kg/kg		0,318	
Heizwert der wasser- und				
aschefreien Substanz	MJ/kg		19,2	
Heizwert des Brennstoffes	MJ/kg		13,6	
zugef. Brennstoffmenge	kg		37,5	
stündl. Brennstoffmenge	kg/h		6,2	
Brennstoffwärmeleistung	kW		23,6	
Wärmeleistung, Wirkungsgrad				
Wasserkreislauf	kg/h	1022,0	1028,5	1025.2
Wassertemp. Kesseleintritt	°C	54,0	54,4	1035,3 54,8
Wassertemp. Kesselaustritt	°C	70,8	72,8	74,8 74,2
Temperaturdifferenz	ĸ	16,4	12,8 18,4	74,2 19,8
Temperaturamerenz	K	10,4	10,4	19,0
Wärmeleistung des Kessels	kW		22,0	
Auslastung	%		27,5	
Kesselwirkungsgrad	%		93,3	
Messwerte Abgasmessstrecke				
Abgastemperatur	°C	60,4	62,0	62,9
Förderdruck	Pa	3,3	10,0	25,8
. Tradition	7 4	0,0	10,0	25,0
Kohlendioxid	%	6,5	10,2	12,7
Kohlenmonoxid	ppm	44,5	169,1	490,4
organisch geb. Kohlenstoff	ppm	0,3	1,4	10,4
Stickstoffmonoxid	ppm	41,6	72,1	97,0

Ermittlung der Staubmassenkonzentration

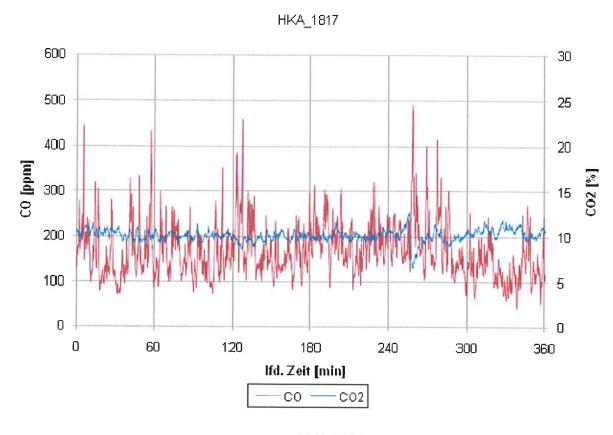
Messergebnisse Versuch: Berechnung nach CO ₂ -Messung	HKA_1817				
Absaugbeginn:	hh:mm	10:15	11:45	13:15	14:45
Absaugdauer:	min	60	60	60	60
Gasprobe abgesaugt:	m³	0,580	0,561	0,541	0,547
CO ₂ -Gehalt gemessen:	%	10,3	9,9	10,2	10,4
O ₂ -Gehalt gerechnet:	%	10,2	10,7	10,4	10,1
Dichte der Gasprobe: trockenes Gas	kg/Nm³	1,34	1,34	1,34	1,34
feuchtes Gas	kg/Nm³	1,34	1,34	1,34	1,34
Wassergehalt	g/Nm³	87,16	83,97	86,11	87,78
Abgasmassenstrom:					
trockenes Gas	kg/kg	9,10	9,48	9,22	9,03
Geschwindigkeit:					
an Entnahmestelle	m/s	0,65	0,68	0,66	0,65
am Sondenkopf	m/s	0,42	0,40	0,38	0,39
Staubmasse:					
abgeschieden abgeschieden bezogen auf	mg	16,2	13,1	19,9	13,3
Probenvolumen	mg/Nm³	31,3	26,4	41,4	27,4
13 % O ₂ -Geh.	mg/Nm³	23,3	20,5	31,3	20,3

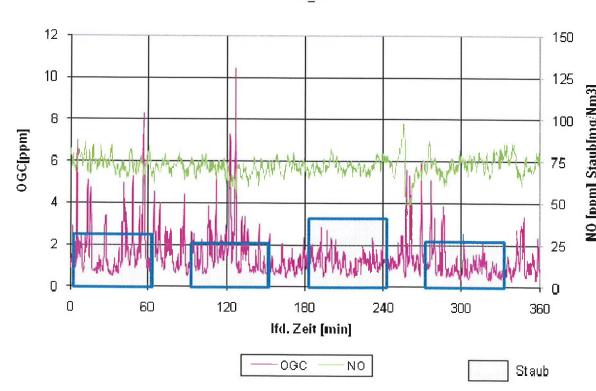

Beurteilungswerte

	bezogen auf zugef. Energie		
	mg/MJ	10 % mg/Nm³	13 % mg/Nm³
Staub	16	33	24
Kohlenmonoxid (CO)	107	220	160
org. geb. Kohlenstoff (OGC)	1	3	2
Stickoxide (NO _x)	75	154	112



2.5.1 Verlauf der leistungsbezogenen Messwerte


HKA_1817



Hackgutfeuerung Herz firematic 80 BioControl BLT-Aktzahl: 173/10

2.5.2 Verlauf der Abgaszusammensetzung

2.6 Verluste über die Oberfläche

Die Bestimmung des Wärmeverlustes durch Wärmeabgabe an der Kesseloberfläche erfolgt in Anlehnung nach DIN 4702-2:1990 unter Anwendung von Strahlungskoeffizienten für technische Oberflächen (nach Nusselt). Beim Versuch im Bereich der Nenn-Wärmeleistung wurde an 83 Punkten an der Oberfläche des Kessels die Temperatur gemessen. Das Ergebnis dieser Messung zeigt folgende Tabelle und die Messwertetabelle im Anhang B:

Parameter	Wert	Einheit
Versuchsnummer	HKA_1818	
Umgebungstemperatur	25,5	°C
Vorlauftemperatur	74,1	°C
Abgastemperatur	112,8	°C
Wärmeleistung des Kessels	80,4	kW
Verluste durch Abstrahlung des Kessels	0,4	kW
Verlustanteil an Nenn-Wärmeleistung	0,5	%

Die Oberflächentemperatur des Bedienungsgriffs lag 2 K über der Umgebungstemperatur.

2.7 Wasserseitiger Widerstand des Heizkessels

Der wasserseitige Widerstand wurde für die Durchflussmengen bei Nenn-Wärmeleistung, welche sich bei einer Temperaturdifferenz von 10 K bzw. 20 K ergeben, bestimmt.

Durchfluss	Temperaturdifferenz	Wassertemperatur	Differenzdruck	
[kg/h]	[K]	[°C]	[mbar]	
3430	20	20,9	5,7	
6860	10	21,0	22,4	

2.8 Elektrische Leistungsaufnahme

2.8.1 Mittlere elektrische Leistungsaufnahme bei Nenn-Wärmeleistung, Kleinster Wärmeleistung, beim Zündvorgang und im Schlummerbetrieb

Betriebszustand	Brennstoff	Mess- dauer	Elektrische Arbeit	Mittlere elektr. Leistungs- aufnahme	Anteil an Nenn- Wärmeleistung
		[min]	[Wh]	[W]	[%]
Nenn-Wärmeleistung	Hackgut	361	1916	318	0,4
Kleinste Wärmeleistung	Fichte	360	637	106	0,1
Zündvorgang	Holzpellets	13	107	494	
Schlummerbetrieb		60	21	21	

2.8.2 Elektrische Leistungsaufnahme zentraler Verbraucher

Verbraucher	Leistung [W]
Saugzuggebläse	86
Antriebsmotor – Stokerschnecke	306
Antriebsmotor – Kipprostklappe	77
Antriebsmotor – Vorschubrost	60
Antriebsmotor – Wärmetauscherreinigung	74
Antriebsmotor – Aschenaustragschnecke	136
Zündgebläse	1722

3 ZUSAMMENFASSUNG DER ERGEBNISSE

3.1 Heiztechnische Prüfung

Die Hackgutfeuerung Herz firematic 80 BioControl der Firma Herz Energietechnik GmbH, mit einer Nenn-Wärmeleistung von 80,0 kW, wurde mit Hackgut Fichte G 30, W 35 (Feinhackgut) entsprechend ÖNORM M 7133:1998, mit einem Wassergehalt von w = 25,3 % und w = 28,4 %, in einem Leistungsbereich von 22,0 bis 80,4 kW geprüft.

Da der Kessel im Bereich der Nenn-Wärmeleistung mit einer Abgastemperatur von weniger als 160 K über der Raumtemperatur betrieben wird, muss der Hersteller entsprechend ÖNORM EN 303-5:1999 angeben, wie die Abgasanlage (Rauchfang) auszuführen ist, um möglichen Versottungen, ungenügendem Förderdruck und Kondensation vorzubeugen.

BLT BLT

Bei den Emissionsmessungen wurden folgende Ergebnisse erzielt:

		Nenr	n-Wärmelei	stung	Kleins	te Wärmele	istung	
Prüfbrennstoff	[-]	Hackgut Fichte						
Wassergehalt	[%]		28,4		25,3			
Wärmeleistung	[kW]		80,4		22,0			
Brennstoff- Wärmeleistung	[kW]		85,6		23,6			
Abgasmassenstrom	[kg/h]		185,7		61,7			
Auslastung	[%]		100,5		27,5			
Abgastemperatur	[°C]		113,2		62,0			
Kesselwirkungsgrad	[%]		94,0		93,3			
Kohlendioxid	[%]		12,8		10,2			
		[mg/MJ] 1)	[mg/m ³] ²⁾	[mg/m ³] ³⁾	[mg/MJ] 1)	[mg/m ³] ²⁾	[mg/m ³] ³⁾	
Staub		24	49	35	16	33	24	
Kohlenmonoxid		20	41	30	107	220	160	
Organ. geb. Kohlens	toff	<1	<1	<1	1	3	2	
Stickoxide	97	196	143	75	154	112		

Emissionswerte in mg/MJ (bezogen auf die eingesetzte Energie), entsprechend gesetzlicher Anforderungen in Österreich.

3.2 Funktionsüberprüfung Temperaturregler / Sicherheitstemperaturbegrenzer am Heizkessel

Die Funktionsüberprüfungen des Temperaturreglers und Sicherheitstemperaturbegrenzers bzw. -wächters am Heizkessel wurden entsprechend Punkt 5.13 der ÖNORM EN 303-5:1999 durchgeführt und dabei die Anforderungen erfüllt.

3.3 Funktionsüberprüfung der Einrichtung zur Abfuhr überschüssiger Wärme

Da die geprüfte Hackgutfeuerung Herz firematic 80 BioControl der Firma Herz Energietechnik GmbH, mit einer Einrichtung zur Abfuhr der Restwärmeleistung entsprechend Abschnitt 4.1.5.11.3 der ÖNORM EN 303-5:1999 ausgeführt ist, wurde die Funktionsüberprüfung durchgeführt.

Während der Überprüfung des Temperaturreglers, des Sicherheitstemperaturbegrenzers und der Einrichtung zur Abfuhr überschüssiger Wärme, wurden weder wasserseitig noch feuerungsseitig gefährliche Betriebszustände erreicht.

Emissionswerte in mg/m³ (bezogen auf 10 % O₂, 1013 mbar, 0 °C, trockenes Abgas), entsprechend ÖNORM EN 303-5:1999.

³⁾ Emissionswerte in mg/m³ (bezogen auf 13 % O₂, 1013 mbar, 0 °C, trockenes Abgas), entsprechend unterschiedlicher nationaler und internationaler Anforderungen.

4 BEURTEILUNG

Auf Grund des Prüfergebnisses wird bestätigt, dass die

Hackgutfeuerung Herz firematic 80 BioControl Prüfbrennstoff: Hackgut Fichte der Firma Herz Energietechnik GmbH

Heiz Ellergietechnik Gilibri

die Anforderungen der Vereinbarungen gemäß Art. 15 a BV-G über "Schutzmaßnahmen betreffend Kleinfeuerungen" (1998) und über die "Einsparung von Energie" (1995) und die Anforderungen der 331. Verordnung: Feuerungsanlagen-Verordnung – FAV; 1997 entsprechend § 23 (3) erfüllt.

Für die sachliche Richtigkeit:

Amtsdirektor Dipl.-HLFL-Ing. Leopold Lasselsberger Heinziert 3250 Wiese

Für den Bericht und die Versuche:

Amtsdirektor Ing. Wolfgang Reiner

Für den Leiter der akkreditterten Prüfstelle:

> Hofrat Dipl.-Ing. Manfred Wörgetter

Wieselburg, am 08.11.2010

ANHANG A (informativ)

Gesetzliche Anforderungen an Kleinfeuerungen für biogene Brennstoffe in Österreich

A.1 Vereinbarung gemäß Art. 15 a B-VG über Änderung der Vereinbarung gemäß Art. 15 a B-VG über die Schutzmaßnahmen betreffend Kleinfeuerungen (1998)

Kleinfeuerungen für feste Brennstoffe dürfen folgende Emissionsgrenzwerte nicht überschreiten:

Equarungo	n für feste Brennstoffe	Emissionsgrenzwerte [mg/MJ]							
rederdinger	i iur leste breillistolle	CO	NO _x	OGC	Staub				
Händisch beschickt	Biogene Brennstoffe	1100	150*)	80	60				
	Fossile Brennstoffe	1100	100	80	60				
Automatisch beschickt	Biogene Brennstoffe	500**)	150*)	40	60				
	Fossile Brennstoffe	500	100	40	40				

^{*)} Der NOx-Grenzwert gilt nur für Holzfeuerungen.

A.2 Vereinbarung gemäß Art. 15 a B-VG über die Einsparung von Energie (1995)

Kleinfeuerungen für feste Brennstoffe dürfen folgende Wirkungsgrade nicht unterschreiten:

Kleinfeuerungen als Zent	ralheizungsgeräte für feste Brennstoffe:
Händisch beschickt	
bis 10 kW	73 %
über 10 bis 200 kW	(65,3 + 7,7 log Pn) %
über 200 kW	83 %
Automatisch beschickt	
bis 10 kW	76 %
über 10 bis 200 kW	(68,3 + 7,7 log Pn) %
über 200 kW	86 %

Die bundesweit gleichen Anforderungen sind mit den entsprechenden Landesgesetzen umgesetzt.

BLT BLT WIESELBURG

^{**)} Bei Teillastbetrieb mit 30 % der Nennleistung kann der Grenzwert um 50 % überschritten werden.

A.3 Feuerungsanlagen-Verordnung – FAV (1997)

331. Verordnung des Bundesministers für wirtschaftliche Angelegenheiten über die Bauart, die Betriebsweise, die Ausstattung und das zulässige Ausmaß der Emission von Anlagen zur Verfeuerung fester, flüssiger oder gasförmiger Brennstoffe in gewerblichen Betriebsanlagen (Feuerungsanlagen-Verordnung – FAV)

Emissionsgrenzwerte Holzfeuerungsanlagen

§ 11. (1) Holzfeuerungsanlagen dürfen entsprechend der für die jeweilige Feuerungsanlage vorgesehenen höchsten Brennstoffwärmeleistung folgende Emissionsgrenzwerte (bezogen auf $13 \% O_2$, 1013 mbar, $0 ^{\circ}\text{C}$, trockenes Abgas) nicht überschreiten:

Schadstoff			Bro	ennstoffwärm	neleistung (M	N)	
		≤ 0,1	> 0,1–0,35	> 0,35–2	> 2–5	> 5–10	> 10
Staub	mg/m³	150	150	150	*)	50	50
СО	mg/m³	800**)	800	250	250	100	100
NO _x	mg/m³						
Buche, naturbe Rinde, I Zapfen	lassene	300	300	300	300	300	200
sonstiges natur- belassenes Holz		250	250	250	250	250	200
Reste von Holz- werkstoffen oder Holzbauteilen, deren Binde- mittel, Härter, Beschichtungen und Holzschutz- mittel schwer- metall- und halogenverbin- dungsfrei sind		500	500	500	500	350	350
HC		F0	50	00	00	00	0.5
ПС	mg/m³	50	50	20	20	20	20

^{*)} bis zum Ablauf des 31. Dezember 2001: 100 ab dem 1. Jänner 2002: 50

Abgasverlust

- § 21. Feuerungsanlagen, die nur der Raumheizung oder der Bereitung von Warmwasser dienen, dürfen entsprechend der eingesetzten Brennstoffart bei Nennlast folgende Abgasverluste nicht überschreiten:

^{**)} bei Teillastbetrieb mit 30 % der Nennwärmeleistung darf der Grenzwert um bis zu 50 % überschritten werden.

ANHANG B

Messpunkte Oberflächentemperatur

TEMP (°C)	PO/KU)		Day and	SBESCHREIBU		100000000000000000000000000000000000000	ESSPUNKT BEZ.	M	TEMP.	ATERIAL E/PO/KU)					POSITIONSBI DES BEDIENI	ESSPUNKT BEZ.	M
	T	-					Z3	014	31,8	KU			uschelgriff	Μι		Z1	
							Z4									Z2	
TEMP	IESS	M	TEMP.	IESS	ME	TEMP.	ESS	M	TEMP.	SS.	ME	TEMP.	ESS	М	TEMP.	ESS	M
[°0]		NR.	[°C]		NR.		FLÄCHE	NR.		FLÄCHE	NR.	[°C]	FLÄCHE	NR.	[°C]	FLÄCHE	NR.
	U1	61	31,0	Q1	61	26,9	M1	61	31,5	11	41	33,7	E1	21	35,7	A1	1
	U2	62	32,4	Q2	62	26,9	M2	62	31,4	12	42	31,6	E2	22	36,9	A2	2
	U3	63	30,9	Q3	63	25,8	M3	63	29,7	13	43	46,0	E3	23	45,0	EA.	3
	U4	64	31,0	Q4	64	25,8	M4	64	29,8	14	44	37,7	E4	24	44,0	A4	4
	U5	65	32,6	Q5	65	25,9	M5	65	33,4	15	45	38,0	E5	25		A5	5
100	Mittelwert		31,6	Mittelwert		26,3	Mittelwert		31,2	Mittelwert		37,4	Mittelwert	Tim	40,4	Mittelwert	
	V1	66	34,3	R1	66	25,5	N1	66	34,1	J1	46	30,4	F1	26	32,7	B1	6
	V2	67	35,2	R2	67	25,5	N2	67	32,5	J2	47	30,4	F2	27	31,0	B2	7
	V3	68	35,5	R3	68	25,5	N3	68	29,7	J3	48	31,4	F3	28	26,9	B3	8
	V4	69	29,6	R4	69	25,6	N4	69	29,2	J4	49	29,6	F4	29	26,5	B4	9
	V5	70	28,4	R5	70		N5	70	28,6	J5	50		F5	30	26,0	B5	10
918.16	Mittelwert		32,6	Mittelwert		25,5	Mittelwert		30,8	Mittelwert		30,5	Mittelwert		28,6	Mittelwert	
	W1	71	29,9	S1	71	28,6	01	71	28,2	K1	51	30,4	G1	31	25,3	C1	11
	W2	72	28,0	S2	72	30,6	02	72	25,5	K2	52	29,2	G2	32	25,8	C2	12
***************************************	W3	73	27,5	S3	73	27,8	03	73	26,2	КЗ	53	27,5	G3	33	25,5	C3	13
	W4	74	32,8	S4	74	28,6	04	74		K4	54	26,3	G4	34	25,5	C4	14
	W5	75	31,8	S5	75	7	O5	75		K5	55		G5	35		C5	15
Sales in	Mittelwert	1,12	30,0	Mittelwert		28,9	Mittelwert		26,6	Mittelwert		28,4	Mittelwert		25,5	Mittelwert	
	X1	76		T1	76	35,8	P1	76	27,0	L1	56	28,9	H1	36	25,5	D1	16
	X2	77		T2	77	35,4	P2	77	26,4	L2	57	25,9	H2	37	25,5	D2	17
	Х3	78		T3	78	34,0	P3	78	25,1	L3	58	26,1	H3	38	25,5	D3	18
	X4	79		T4	79	33,5	P4	79	25,0	L4	59		H4	39	25,6	D4	19
	X5	80		T5	80		P5	80	25,5	L5	60		H5	40		D5	20
	Mittelwert	100		Mittelwert		34,7	Mittelwert		25,8	Mittelwert		27,0	Mittelwert		25,5	Mittelwert	

S1...S5 Bodenfläche

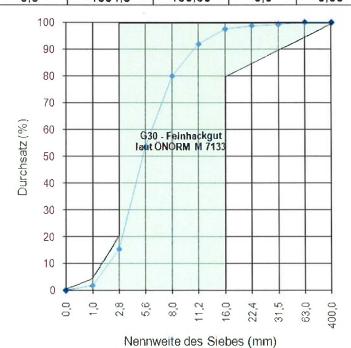
ANHANG C

Siebanalyse

Datum der Untersuchung: Bezeichnung der Probe: Labor Nr.:

Wassergehalt_{roh}: Schüttdichte_{roh}:

 $\textbf{Schüttdichte}_{wf}\textbf{:}$


8. September 2010	Bearbeiter: Plank
	Hackgutprobe; Halle 4; HKP
	10-0412
[%]	49,7
[kg/Srm]	249
[kg/Srm]	125

Siebverfahren:

Maschinensiebverfahren mit bewegten Siebsätzen in Form von Drahtsiebböden.

KORNGRÖSSENVERTEILUNG (SIEBLINIE)

Nennweite	Rücks	stand	Durch	ngang
des Siebes	absolut	relativ	absolut	relativ
mm	g	%	g	%
400	0.0	0,00	1004,6	100,00
63	0.0	0,00	1004,6	100,00
31,5	7,7	0,77	996,9	99,23
22,4	12,0	1,19	992,6	98,81
16,0	24,7	2,46	979,9	97,54
11,2	81,0	8,06	923,6	91,94
8,0	201,2	20,03	803,4	79,97
5,6	466,8	46,47	537,8	53,53
2,8	850,9	84,70	153,7	15,30
1,0	986,7	98,22	17,9	1,78
0,0	1004,6	100.00	0,0	0,00

Die BLT Wieselburg ist entsprechend dem Akkreditierungsgesetz, BGBI. Nr. 468/1992, mit der Identifikationsnummer 112 als Prüfstelle für Feuerungen akkreditiert und entspricht mit ihrem Qualitätsmanagement den Anforderungen der ÖVE/ÖNORM EN ISOIEC 17 025.

FRANCISCO JOSEPHINUM WIESELBURG

BLT - BIOMASS I LOGISTICS I TECHNOLOGY

Rottenhauser Straße 1 AT 3250 Wieselburg Austria / Österreich Tel.: +43-7416-52175-0 Fax: +43-7416-52175-45 E-Mail: blt@josephinum.at Internet: http://blt.josephinum.at

Die in diesem Prüfbericht angegebenen Prüfergebnisse beziehen sich ausschließlich auf den unter dem Kapitel "Angaben auf dem Kesselschild" angegebenen Prüfgegenstand.

Der Prüfbericht darf – außer in schriftlich genehmigten Ausnahmefällen – nur wörtlich und ungekürzt veröffentlicht werden.